

Утвержден ТРОН.407290.004-ЛУ

ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ АДИ

Руководство по эксплуатации

TPOH.407290.004 P3

Редакция 2.6

ООО «ТЕРМОТРОНИК»

193318, Россия, Санкт-Петербург, ул. Ворошилова, д. 2 Телефон, факс: +7 (812) 326-10-50 Сайт ООО «ТЕРМОТРОНИК»: www.termotronic.ru Служба технической поддержки: support@termotronic.ru тел. 8-800-333-10-34

СОДЕРЖАНИЕ

1	НАЗНАЧЕНИЕ, ИСПОЛНЕНИЯ	4
2	ХАРАКТЕРИСТИКИ	5
2.1	Технические характеристики	. 5
	1.1 Метрологические характеристики	. 5
	1.2 Входы импульсные	
	1.3 Входы токовые	
	1.4 Выход токовый	
	1.5 Дискретный выход	
	1.6 Архивы	
	1.7 Питание	
	1.8 Интерфейсы 1.9 Габаритные размеры и масса	
	Т.9 Таоариппые размеры и масса	
	ОПИСАНИЕ И РАБОТА	
3 2 1	Состав	
	Режимы работы	
3.3		
3.4	· ·	
4	МЕРЫ БЕЗОПАСНОСТИ	
5	ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ	
-	Настройка	
	Размещение	
	Подключение	
5.4		
6	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	
7	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
, 7.1		
	Периодическая поверка	
8	УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ	
9	ТРАНСПОРТИРОВАНИЕ	
J 10	ХРАНЕНИЕ	
_		
_	ложение А – Пример отчёта	
じして	IDOUBLIC BODMSTURBLIC DOKVMONTLI	20

Настоящее руководство по эксплуатации (далее – руководство) распространяется на преобразователи измерительные АДИ (далее – АДИ) и предназначено для ознакомления с их характеристиками, устройством, конструкцией, правилами монтажа и эксплуатации.

В руководстве применены следующие обозначения и сокращения:

В – вес импульса водосчётчика

G – расход воды

I – постоянный ток

N – количество импульсов, поступивших от водосчётчика

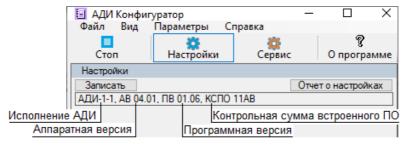
Р – давление воды

V – объём воды

АВ – аппаратная версия

ВС – водосчётчик

КС - контрольная сумма


ПД – преобразователь давления

ПК – персональный компьютер

ПО – программное обеспечение

Разработчик оставляет за собой право вносить изменения в руководство. Непрерывная работа над повышением надёжности и улучшением АДИ может привести к некоторым непринципиальным изменениям, не отражённым в настоящей редакции руководства.

АДИ имеет разные аппаратные версии (АВ). Особенности аппаратных версий описаны в настоящем руководстве. Идентификация АДИ по АВ производится с помощью ПО АДИ Конфигуратор. После установления связи с АДИ идентификационные признаки АДИ отображаются на вкладке «Настройки».

Заказ АДИ осуществляется по карте заказа [4.1] 1.

Преобразователи измерительные АДИ зарегистрированы в Федеральном информационном фонде по обеспечению единства измерений.

¹ Здесь и далее в квадратных скобках [...] указан номер документа по разделу «Ссылочные нормативные документы».

1 НАЗНАЧЕНИЕ, ИСПОЛНЕНИЯ

АДИ предназначены для преобразований импульсных сигналов счётчиков объёма или электроэнергии, а также токовых сигналов преобразователей давления в значения объёма (энергии) и давления, а также для преобразований цифрового сигнала (соответствующего расходу) расходомеров в выходной сигнал постоянного тока.

АДИ обеспечивают:

- преобразование входных сигналов частотой до 20 Гц (до 1000 Гц), сформированных на пассивных (активных) выходах счётчиков объёма или электроэнергии, в значения объёма воды или энергии по одному или двум измерительным каналам;
- преобразование входных сигналов постоянного тока от 4 до 20 мА, сформированных на токовых выходах преобразователей избыточного давления, в значения давления воды по одному или двум измерительным каналам;
- преобразование текущего расхода воды по интерфейсу LIN от расходомера Питерфлоу в выходной сигнал постоянного тока от 4 до 20 мА;
- формирование дискретного выходного сигнала в зависимости от значения контролируемого параметра;
- преобразование цифрового сигнала, сформированного на выходе LIN расходомера Питерфлоу и несущего измерительную и диагностическую информацию, в сигнал интерфейса RS-232, RS485 или Ethernet;
- измерение текущего времени, времени работы и времени отсутствия сетевого питания;
- архивирование часовых, суточных, месячных и интегральных (нарастающим итогом) значений объёма воды по двум каналам измерения объёма и по интерфейсу LIN от расходомера Питерфлоу;
- архивирование часовых, суточных, месячных значений давления воды по двум каналам измерения давления.

АДИ выпускаются по техническим условиям [5.3] в исполнениях, указанных в таблице 1.1.

Таблица 1.1 – Исполнения

Ī		Наличие			Количест	во		Наличие
Исполнение		ТОКОВОГО	Наличие	измерительных входов		интерфейсов		дискретного
	выхода архива		_		RS-232 ¹⁾	выхода		
		IOUT		V	Р	LIN	(RS485)	DOUT ²⁾
_							(Ethernet)	
	АДИ-0-1	нет	есть	2	2	1	1	есть
	АДИ-1-0	есть	нет	2	2	1	1	нет
	АДИ-1-1	есть	есть	2	2	1	1	нет

¹⁾ Тип интерфейса в соответствии с картой заказа.

²⁾ В АДИ с АВ 3.0 и выше дискретный выход есть во всех исполнениях.

2 ХАРАКТЕРИСТИКИ

2.1 Технические характеристики

2.1.1 Метрологические характеристики

Диапазоны и пределы погрешности измерений и преобразований в рабочих условиях эксплуатации указаны в таблице 2.1.

Таблица 2.1 – Метрологические характеристики

Параметр	Диапазон значений	Пределы погрешности	
Объём ¹⁾	от 0 до 10 ⁹ м ³	± 1 ед. мл. разряда (абсолют- ная)	
Избыточное давление ²⁾	от 0 до 2,5 МПа	± 0,25 %	(приведённая)
Постоянный ток 3)	от 4 до 20 мА	± 0,25 %	(приведённая)
Время 4)	от 0 до 150000 ч	± 5 с/сутки	(абсолютная)

¹⁾ Пропорционально количеству импульсов на импульсном входе (V1, V2).

2.1.2 Входы импульсные

Для АДИ любого исполнения: назначение входов V1 и V2 — подключение водосчетчиков (расходомеров) с пассивным импульсным выходом (открытый коллектор, геркон) и характеристиками, указанными в таблице 2.2. Измеряемый параметр: количество импульсов.

Таблица 2.2 – Водосчётчики

Параметр	Значение
Вес импульса, л/имп (Вт-ч/имп)	от 0,001 до 1000
Частота, Гц, не более	20
Ток утечки в закрытом состоянии, мкА, не более	1
Падение напряжения в открытом состоянии при токе 1 мA, B, не более	0,6

Примечание — Допускается использовать расходомеры с активным выходным сигналом частотой до 1000 Γ ц и напряжением до 5 B.

2.1.3 Входы токовые

Для АДИ любого исполнения: назначение входов P1 и P2 – подключение ПД с характеристиками, указанными в таблице 2.3.

Измеряемый параметр: постоянный ток в диапазоне от 4 до 20 мА.

Таблица 2.3 – Преобразователи давления

- race - reproduced a result Harriston	•••
Параметр	Значение
Избыточное давление, МПа (кгс/см²)	от 0 до 2,5 (25,49)
Диапазон тока, мА	от 4 до 20

2.1.4 Выход токовый

Только для исполнений АДИ-1-0, АДИ-1-1: токовый выход IOUT с сигналом постоянного тока от 4 до 20 мА, пропорционального текущему расходу по интерфейсу LIN от расходомера Питерфлоу. Сопротивление нагрузки: не более 200 Ом.

²⁾ Пропорционально постоянному току на токовом входе (Р1, Р2).

³⁾ Пропорционально расходу по интерфейсу LIN. Только для АДИ-1-0, АДИ-1-1.

⁴⁾ Время текущее, время работы, время отсутствия питания. Только для АДИ-х-1.

2.1.5 Дискретный выход

Дискретный выход предназначен для сигнализации о наступлении контролируемого события. Для аппаратного исполнения (АВ) 2.0 присутствует только в исполнении АДИ-0-1, для аппаратного исполнения 3.0 и выше во всех исполнениях.

Сигналы формируются путем изменения состояния (замкнуто/разомкнуто) выходной цепи. Состоянию «Включено» дискретного выхода соответствует низкий уровень выходного сопротивления, а состоянию «Выключено» — высокий.

Характеристики выходной цепи:

Тип выхода открытый коллектор (ОК).

– Максимально допустимое напряжение

15 B.

- Максимально допустимый ток

50 мА.

– Сопротивление в открытом состоянии

не более 15 Ом.

Режимы работы дискретного выхода (задаются при настройке АДИ пользователем):

- 1. Выключен.
- 2. Включение по срабатыванию дискретного входа V1 (V2).
- 3. Включение при Р1 (Р2) > уставки МАХ.
- 4. Включение при P1 (P2) < уставки MIN.
- 5. Включение при (P1 (P2) < уставки MIN) или (P1 (P2) > уставки MAX).
- 6. Включение при (P1 (P2) > уставки MIN) и (P1 (P2) < уставки MAX).
- 7. Включение при G > уставки МАХ.
- 8. Включение при G < уставки MIN.
- 9. Включение при (G < уставки MIN) или (G > уставки MAX).
- 10. Включение при (G > уставки MIN) и (G < уставки MAX).
- 11. Включение по интерфейсу.
- 12. Включение по факту обнаружения пустой трубы.

Примечания: 1) G – текущий расход по интерфейсу LIN от расходомера Питерфлоу.

2) Факт обнаружения пустой трубы возможен только при подключении расходомера «Питерфлоу по интерфейсу LIN.

2.1.6 Архивы

Только для исполнений АДИ-0-1, АДИ-1-1: значения измеренных величин регистрируются и сохраняются в энергонезависимой памяти.

Архив формируется на часовых, суточных и месячных интервалах, ёмкость архива для AB 3.0 и ниже 1440 часов, 180 суток, 36 месяцев соответственно; для AB 4.0 и выше – 2048 часов, 512 суток, 60 месяцев.

Архивные записи формируются по кольцевому принципу: каждая очередная запись сверх установленного объёма — взамен первой (самой ранней) записи. Каждая запись содержит следующие данные:

- дату и время;
- минимальное, среднее и максимальное давление по каждому входу;
- объём и вес импульса по каждому импульсному входу;
- объём по интерфейсу LIN от расходомера Питерфлоу;

- интегральные (нарастающим итогом) значения объёмов;
- время работы;
- диагностическую информацию;
- продолжительность отключения внешнего питания.

Сброс архива измеренных величин, в том числе интегральных значений объёмов, разрешён только в режиме настройки (см. п. 3.2) и невозможен при штатной эксплуатации.

АДИ обеспечивает формирование фискального архива внутренних событий ёмкостью **256** записей. Фискальный архив сохраняется (не сбрасывается), записи не стираются.

2.1.7 Питание

Для АДИ любого исполнения: электрическое питание осуществляется от внешнего источника постоянного тока с выходным напряжением от 10,8 до 13,2 В для АВ 3.0 и ниже или от 10 до 30В для АВ 4.0 и выше. Потребляемый ток: не более 50 мА при напряжении питания 12В для АДИ с интерфейсами RS232/RS485 или 150 мА для интерфейса Ethernet.

2.1.7.1 Для исполнений АДИ-0-1, АДИ-1-1 устанавливается встроенный резервный источник питания: аккумулятор с номинальным напряжением 3,6 В и номинальной ёмкостью 11 мА·ч для АВ 3.0 и ниже или литиевая батарея 3,6В номинальной емкостью 1,2 А·ч.

Для АВ 3.0 и ниже при отсутствии внешнего питания обеспечивается счёт импульсов (длительностью не менее 50 мс) и вычисление объёмов. Продолжительность автономной работы в режиме счета: не менее 100 часов. Архивные записи не формируются. Работа по интерфейсу запрещена.

Время хранения АДИ на складе — не более 6 мес. Перед установкой АДИ, в случае хранения более 6 месяцев, следует зарядить аккумулятор. Для этого необходимо подключить внешний блок питания. Время зарядки не менее 1 суток.

2.1.7.2 Для АВ 4.0 и выше при отсутствии внешнего питания обеспечивается счёт импульсов (длительностью не менее 50 мс), вычисление объёмов и формирование архивных записей. Работа по интерфейсу запрещена.

Время хранения АДИ на складе – не более 5 лет.

2.1.8 Интерфейсы

АДИ любого исполнения имеет интерфейс LIN для связи с расходомерами Питерфлоу.

Для связи с ПК и другими внешними устройствами в зависимости от исполнения АДИ имеет интерфейсы:

- RS232:
- RS485:
- Ethernet.

Интерфейс RS232

Интерфейс имеет гальваническую развязку от АДИ. Для нормальной работы интерфейса RS232 напряжение между контактами RTS и GND должно быть в пределах +5,5...12B.

Технические характеристики интерфейса:

•	Скорость обмена	9600 или 19200 бит/с;
•	Количество бит данных	8;
•	Количество стартовых бит	1;
•	Количество стоповых бит	1;
•	Контроль четности	нет;
•	Управление потоком	нет.

Протокол обмена MODBUS ASCII.

Для AB4.0 и выше тип протокола MODBUS ASCII или MODBUS RTU. Тип протокола определяется автоматически.

Скорость обмена задается при настройке в ПО «АДИ Конфигуратор».

Схема подключения приведена на рисунке 2.1.

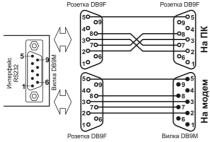


Рис. 2.1 Схема подключения RS232

Интерфейс RS485

Интерфейс имеет гальваническую развязку от АДИ.

Технические характеристики интерфейса:

Скорость обмена	9600 или 19200 бит/с;
Количество бит данных	8;
Количество стартовых бит	1;
Количество стоповых бит	1;
Контроль четности	нет;
Управление потоком	нет.

Протокол обмена MODBUS ASCII.

Для AB4.0 и выше тип протокола MODBUS ASCII или MODBUS RTU. Тип протокола определяется автоматически.

Скорость обмена задается при настройке в ПО «АДИ Конфигуратор».

Подключение внешних устройств по интерфейсу RS485 осуществляется через разъем RJ45. Цоколевка выходов показана на рисунке 2.2.

Рис. 2.2 Цоколевка разъема RJ45 интерфейса RS485

Интерфейс Ethernet

Интерфейс предназначен для подключения АДИ к сети Ethernet.

Подключение внешних устройств осуществляется через разъем RJ45.

Адаптер может выполнять преобразование протоколов, передаваемых поверх стандартного протокола TCP/IP, и реализует режимы TCP сервер и TCP клиент. В зависимости от режима и номера используемого TCP порта используются следующие протоколы обмена:

- Режим ТСР сервер:
 - § Порт 502 –MODBUS TCP;
 - § Порт 5001 MODBUS ASCII для AB 3.0 и ниже или MODBUS ASCII/ MODBUS RTU для AB 4.0 и выше.
- Режим ТСР клиент:
 - § Порт менее 5000 –MODBUS TCP:
 - \S Порт больше или равен 5000 MODBUS ASCII для AB 3.0 и ниже или MODBUS ASCII/ MODBUS RTU для AB 4.0 и выше.

Семисегментный индикатор предназначен для отображения текущего ІР-адреса и индикации активности по интерфейсу.

Для индикации IP-адреса следует однократно нажать кнопку конфигурации. После нажатия на кнопку символы IP адреса отображаются последовательно.

Сегменты индикатора для отображения активности показаны на рисунке 2.3.

Рис. 2.3 Индикатор Ethernet

Настройка IP-адреса интерфейса Ehternet

- 1. Отключить питание на АДИ.
- 2. Подключить АДИ к компьютеру по Ethernet.

Примечание Компьютер и АДИ должны находиться в одной подсети, то есть IP адрес компьютера должен быть 192.168.1.xxx.

- 3. Нажать кнопку конфигурации на АДИ и включить питание. Кнопку удерживать не менее 5 с. АДИ запускается с параметрами по умолчанию:
 - IP-адрес 192.168.1.1;
 - Маска подсети 255.255.255.0.
 - 4. Запустить на ПК браузер и ввести адрес адаптера: 192.168.1.1.
- 5. Войти в раздел «Сетевые настройки» на HTML-странице АДИ и ввести требуемые параметры раздел «Новое значение».
 - 6. Нажать кнопку «Запись».
- 7. Перезапустить АДИ для вступления в силу новых настроек путем кратковременного отключения внешнего питания.

Сетевые настройки

	Текущие	EEPROM	Новое значение
IP Address:	192.168.1.192	192.168.1.192	
Subnet Mask:	255.255.255.0	255.255.255.0	255.255.255.0
Gateway:	192.168.1.1	192.168.1.1	
DNS 1:	192.168.1.1	192.168.1.1	
DNS 2:	0.0.0.0	0.0.0.0	0.0.0.0
NBNS Name:	640E98	-	-
MAC Address: 00:20:A6:64:0E:9		:98	-
DHCP:			○ Enable ⊙ Disable
Source:	EEPROM	Manual	-

Ha	астройки	клиента

Server 1:			
Server 2:			
Server 3:			
Server 4:	[
		🗅 без протокола	
Protocol:		○ EKC	
		C <u>Log+Pass</u>	
		Выкл (режим сервера)	
Protocol:		○ <u>Loq+Pass</u>	

Запись

Примечание Значения параметров Gateway и DNS 1 задаются системным администратором сети.

2.1.9 Габаритные размеры и масса

Для АДИ любого исполнения: габаритные размеры и масса (без упаковки) указаны в таблице 2.4.

Таблица 2.4 – Размеры и масса

Параметр	Значение
Длина, мм, не более	90
Ширина, мм, не более	36
Высота, мм, не более	63
Масса, кг, не более	0,3

2.2 Эксплуатационные характеристики

АДИ сохраняет свои характеристики при эксплуатации в закрытых взрывобезопасных помещениях без агрессивных газов и паров воды, при воздействии факторов внешней среды с параметрами, указанными в таблице 2.5.

Таблица 2.5 – Рабочие условия эксплуатации

Параметр	Значение
Температура окружающего воздуха, °С	от 0 до 50
Относительная влажность воздуха 1), %, не более	95
Атмосферное давление, кПа (мм рт. ст.)	от 84 (630) до 106,7 (800)
Напряжённость магнитного поля ²⁾ , А/м, не более	400
Амплитуда механической вибрации ³⁾ , мм, не более	0,35

¹⁾ При температуре 35°C.

Защита от поражения электрическим током: класс III по ГОСТ 12.2.007.0 [1.1].

Защита корпуса от проникновения внешних твёрдых предметов и воды: группа IP40 по ГОСТ 14254 [1.2].

Средний срок службы: 12 лет.

Средняя наработка на отказ: 50000 часов.

²⁾ Частотой 50 Гц.

³⁾ В диапазоне частот от 10 до 55 Гц.

3 ОПИСАНИЕ И РАБОТА

3.1 Состав

АДИ выполнен в пластмассовом корпусе. Общий вид АДИ любого исполнения показан на рисунке 3.1. Назначение клеммников указано в таблице 3.1.

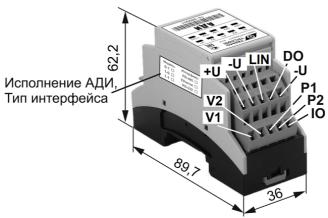


Рисунок 3.1 – Общий вид

Таблица 3.1 – Клеммники

Обозначе- ние	Назначение	Исполнение АДИ
V1, V2	Вход импульсный	любое
P1, P2	Вход токовый	любое
10	Выход токовый	АДИ-1-0, АДИ-1-1
DO	Выход дискретный	АДИ-0-1 ¹⁾
LIN	Интерфейс LIN для Питерфлоу	любое
RS232 RS485 Ethernet	Интерфейс для ПК	любое Тип интерфейса в соот- ветствии с картой заказа
+ U –U	Питание +U В Питание –U В (общий, два контакта)	любое любое

¹⁾ В АДИ с АВ 3.0 и выше дискретный выход есть во всех исполнениях

3.2 Режимы работы

РАБОТА

Используют при штатной эксплуатации (по прямому назначению).

Обеспечивается: вычисление объёма и давления, преобразование интерфейсного сигнала от расходомера Питерфлоу в выходной сигнал интерфейса RS-232 (RS48, Ethernet) и в выходной токовый сигнал (только для исполнений АДИ-1-0, АДИ-1-1), формирование архива (только для исполнений АДИ-0-1, АДИ-1-1).

Примечание Для считывания архива используют ПО «АРХИВАТОР», размещённое на сайте ООО «ТЕРМОТРОНИК».

НАСТРОЙКА

Используют для конфигурирования АДИ. Признак разрешения конфигурирования устанавливается при нажатии кнопки доступа (под откидной крышкой АДИ) и сбрасывается после повторного нажатия кнопки или через один час.

Обеспечивается: изменение настроечных параметров, сброса архива.

Примечание Для настройки используют ПО «АДИ КОНФИГУРАТОР», размещённое на сайте ООО «ТЕРМОТРОНИК».

3.3 Маркировка и пломбирование

Маркировка АДИ отображает следующую информацию: наименование, обозначение, исполнение и заводской номер АДИ, знак утверждения типа, товарный знак предприятия-изготовителя.

Пломбирование АДИ выполняют путём нанесения оттиска клейма поверителя на пломбировочной ленте после поверки.

3.4 Защита от несанкционированного вмешательства

Уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286 [2.1]. Защита метрологически значимой части ПО обеспечивается формированием контрольной суммы (КС) исполняемого кода. Значение КС исполняемого кода (11АВ), установленное в описании типа, записывают в паспорт [5.1] АДИ при выпуске из производства.

Контроль неизменности калибровок обеспечивается формированием КС «Контрольная сумма калибровок», значение которой записывают в паспорт [5.1] АДИ при поверке.

Регистрация событий, связанных с настройкой, калибровкой, сбросом архива измеренных величин, установкой часов обеспечивается формированием нестираемого фискального архива.

4 МЕРЫ БЕЗОПАСНОСТИ

К работе с АДИ допускается обслуживающий персонал, изучивший настоящее руководство и прошедший инструктаж по технике безопасности в соответствии с действующими нормативными документами.

При эксплуатации АДИ должны соблюдаться правила технической эксплуатации электроустановок потребителей [3.1], правила техники безопасности при эксплуатации электроустановок [3.2].

По способу защиты человека от поражения электрическим током АДИ относится к классу III по ГОСТ 12.2.007.0 [1.1]. Элементы для заземления отсутствуют.

ВНИМАНИЕ! НЕ ДОПУСКАЕТСЯ эксплуатация во взрывоопасных помещениях!

5 ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ

5.1 Настройка

Настройку АДИ рекомендуется выполнять до подключения внешних устройств на месте эксплуатации.

Подключить компьютер к АДИ по схеме, определяемой типом интерфейса. Подключить к АДИ блок питания.

Поднять крышку АДИ и нажатием кнопки доступа по рисунку 5.1 установить признак разрешения конфигурирования.

Кнопка доступа

RS232

RS485

АВ менее 4.0

АВ 4.0 и 5.0

AB 6.0

Рисунок 5.1 – Расположение кнопки доступа в зависимости от типа интерфейса и аппаратной версии АДИ

С помощью ПО «АДИ КОНФИГУРАТОР» выполнить следующие операции:

- 1. Установить текущую дату и время для исполнений АДИ-0-1, АДИ-1-1;
- 2. В зависимости от типа и характеристик внешних устройств, подключённых к АДИ, установить требуемые значения настроечных параметров;

- 3. Распечатать отчёт о настройках.
- 4. Повторно нажать кнопку доступа и убедиться в запрете конфигурирования.

Примечание Без нажатия кнопки доступа признак разрешения конфигурирования сбрасывается автоматически через один час.

Пример отчёта о настройках приведён в приложении А.

5.2 Размещение

Рабочие условия в месте установки АДИ должны соответствовать требованиям п. 2.2. Рекомендуемая температура окружающего воздуха: от 15 до 25 °C.

Место установки не должно быть вблизи силовых кабелей, электрощитов, сварочных аппаратов и т.п., иначе АДИ следует размещать внутри металлической оболочки (шкафа монтажного), присоединённой к контуру защитного заземления.

Для крепления АДИ на месте установки использовать DIN-рейку и защёлки.

5.3 Подключение

Линии связи рекомендуется прокладывать:

- неэкранированными кабелями, если на расстоянии до 3 м от них отсутствуют силовые проводники с индуктивной нагрузкой более 1 А (трансформаторы, сварочные аппараты, двигатели) и прочие источники электромагнитных помех;
- экранированными кабелями (в металлических трубах, металлорукавах), если источники электромагнитных помех имеются. С целью исключения возможности замыкания экранов кабелей с другими цепями следует применять кабели, имеющие наружную изоляцию поверх экрана.

Схема подключения внешних устройств к АДИ приведена на рисунке 5.2. Провода (с сечением жил от 0,06 до 2 мм2) подключить к зажимным клеммникам АДИ. Рекомендуется предварительно разделать каждый провод на наконечник-гильзу с изолированным фланцем.

· Входы V1, V2 – для АДИ любого исполнения.

Показано подключение ВС с пассивным и с активным выходом. Обеспечивается вычисление объёмов.

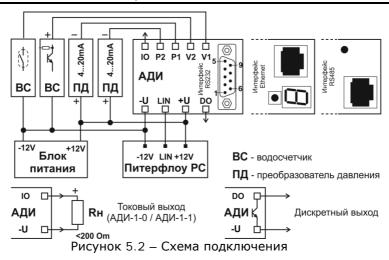
Входы Р1, Р2 – для АДИ любого исполнения.

Показано подключение ПД с выходным сигналом постоянного тока. Обеспечивается вычисление давлений.

- Выход DO только для исполнений АДИ-0-1 с AB 2.0 и для всех исполнений с AB 3.0 и выше.
- Выход IO только для исполнений АДИ-1-0 и АДИ-1-1.

Значение выходного тока пропорционально текущему расходу по интерфейсу LIN от расходомера Питерфлоу.

• Bxoд LIN – для АДИ любого исполнения.


Только для подключения расходомера Питерфлоу по интерфейсу LIN.

Входы +U и -U – для АДИ любого исполнения.

Вход –U: общий для всех входных и выходных сигналов. Допускается питание АДИ от отдельного блока питания, от блока питания расходомера Питерфлоу или от блока питания ПД.

ВНИМАНИЕ! Для АВ 3.0 и ниже использовать блок питания ТОЛЬКО с номинальным напряжением 12 В!

Примечание При подключении Питерфлоу по LIN и раздельном питании АДИ и Питерфлоу, необходимо соединить общие выходы (-U) обоих блоков питания.

5.4 Ввод в эксплуатацию

Убедиться в целостности пломбы поверителя (оттиска клейма на пломбировочной ленте).

Поднять крышку АДИ и нажать кнопку доступа (разрешения/запрета конфигурирования). С помощью ПО «АДИ КОНФИГУРАТОР» выполнить сброс архива измеренных величин. Повторно нажать кнопку доступа и убедиться в запрете конфигурирования.

Убедиться в соответствии значения «Контрольная сумма калибровок» данным паспорта [5.1] и отчёта о настройках (приложение А). Убедиться в соответствии значения «Контрольная сумма настроек» данным отчёта о настройках.

Для защиты от несанкционированного изменения настройки установить крышку и опломбировать путём установки навесной пломбы по рисунку 5.3. Пломбирование выполняется инспектором снабжающей организации.

Рисунок 5.3 – Пломбирование

6 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

Использование определяется заданной конфигурацией АДИ и характеристиками внешних устройств, подключённых к АДИ.

ВНИМАНИЕ!	Для выполнения измерений, относящихся к сфере государ-	
	ственного регулирования обеспечения единства измере-	
	ний, допускается использовать ТОЛЬКО поверенные изме-	
	рительные каналы АДИ!	

Вычисление объёма воды V, м³ выполняется по формуле (1)

$$V = 10^{-3} \times B \times N \tag{1},$$

где В — заданное при настройке значение веса импульса, л/имп.; N — измеренное на входе (V1, V2) количество импульсов.

Вычисление избыточного давления воды Р, МПа выполняется по формуле (2)

$$P = Pmaxx(I - I_H)/(I_B - I_H)$$
 (2),

где Pmax — заданное при настройке значение максимального давления, МПа; I — измеренное на входе (P1, P2) значение тока, мА; I_H — заданное (по умолчанию) нижнее значение диапазона тока, I_H = 4 мА; I_B — заданное (по умолчанию) верхнее значение диапазона тока, I_B = 20 мА.

Только для исполнений АДИ-1-0, АДИ-1-1: преобразование текущего расхода (по цифровому каналу LIN от расходомера Питерфлоу) в значение постоянного тока I в диапазоне от 4 до 20 мА на выходе OUT выполняется по формуле (3)

$$I = I_{H} + (I_{B} - I_{H}) \times (G - Gmin) / (Gmax - Gmin)$$
(3),

где I_H — заданное (по умолчанию I_H = 4 мA) нижнее значение диапазона тока; I_B — заданное (по умолчанию I_B = 20 мA) верхнее значение диапазона тока; G — измеренное на входе (LIN) значение расхода, м³/ч, G — заданное при настройке минимальное значение диапазона расхода, м³/ч; G — заданное при настройке максимальное значение диапазона расхода, м³/ч.

Архив измеренных величин, диагностическая информация, параметры настройки представляются на ПК с помощью ПО «АРХИВАТОР».

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание АДИ включает в себя внешний осмотр, проверку работоспособности и периодическую поверку.

7.1 Внешний осмотр и проверка работоспособности

Один раз в год

Убедиться в отсутствии внешних повреждений АДИ, в целостности пломб, в надёжности электрических соединений. При необходимости выполнить затяжку крепёжных и электрических соединений. Принять меры для сохранения пломб (оттисков клейм) при эксплуатации!

С помощью ПО «АРХИВАТОР» выполнить считывание архива измеренных величин и убедиться в нормальном функционировании АДИ.

7.2 Периодическая поверка

Один раз в четыре года (межповерочный интервал)

Поверку АДИ выполнять по методике поверки [5.2] с использованием ПО «АДИ ПОВЕРКА».

После поверки убедиться в том, что АДИ опломбирован поверителем, а в паспорт [5.1] внесена запись о поверке, включающая значение «Контрольная сумма калибровок».

8 УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Перед устранением неисправностей убедиться в надёжности контактов, в отсутствии обрыва, короткого замыкания или замыкания на землю линий связи, в соответствии полярности сигналов, а также в корректности заданных настроечных параметров.

Выявленные неисправности устраняют только на предприятии-изготовителе или в сервисном центре. Заполнить акт рекламации [5.4], упаковать АДИ в жёсткую тару так, чтобы исключить его повреждение при транспортировании, и направить АДИ вместе с паспортом [5.1] и актом рекламации [5.4] на предприятие-изготовитель или в сервисный центр для ремонта.

9 ТРАНСПОРТИРОВАНИЕ

Транспортирование АДИ осуществлять в штатной упаковке всеми видами транспорта. Во время транспортирования и погрузочно-разгрузочных работ упаковка не должна подвергаться резким ударам и воздействию атмосферных осадков и пыли.

Условия транспортирования:

- температура окружающего воздуха от минус 25 до 55 °C;
- относительная влажность воздуха при температуре 35°C не более 95 %;
- вибрация частотой от 10 до 55 Гц с амплитудой смещения до 0,35 мм.

10 ХРАНЕНИЕ

Хранение АДИ осуществлять в штатной упаковке в отапливаемых помещениях при отсутствии в окружающей среде агрессивных газов, паров воды, пыли. Конденсация влаги не допускается. Расстояние до отопительных устройств: не менее 0,5 м.

Условия хранения:

- температура окружающего воздуха от 10 до 30 °C;
- относительная влажность воздуха при температуре 35°C не более 95 %.

Консервация и обслуживание АДИ при хранении не требуется.

Приложение А – Пример отчёта

ОТЧЕТ О НАСТРОЙКАХ

	Адаптер измерительный:	АДИ-1-1
	Серийный номер:	1234567
	Аппаратная версия:	AB 04.00
ИДЕНТИФИКАЦИЯ	Программная версия:	ПВ 04.00
	Контрольная сумма ПО:	11AB.4F32
	Контрольная сумма настроек:	1187
	Контрольная сумма калибровок:	1897
	Сетевой адрес:	240
	Отчетный час:	23
ОБЩИЕ	Отчетные сутки:	31
	Наличие Питерфлоу:	да
	Скорость обмена (бит/сек.):	9600
	Режим:	счет имп.
	Уровень сигнала:	H3
Вход V1	Вес импульса (л/имп.):	1
	Время антидребезга (мс):	10
	Единицы измерения:	м3
	Режим:	счет имп.
	Уровень сигнала:	H3
Вход V2	Вес импульса (л/имп.):	5
	Время антидребезга (мс):	10
	Единицы измерения:	м3
Вход Р1	Ртах (МПа):	1.6
Вход Р2	Ртах (МПа):	1.6
Выход OUT(ток)	Gmin (м3/ч):	0
Быход ООТ(ТОК)	Gmax (м3/ч):	16
	Режим:	выключен
Выход OUT(дискр.)	Уставка MIN:	15
	Уставка МАХ:	20

Дата создания 19.06.2019 11:36:25

Ссылочные нормативные документы

- 1.1 ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности. <2 ХАРАКТЕРИСТИКИ. 4 МЕРЫ БЕЗОПАСНОСТИ> ²
- 1.2 ГОСТ 14254-2015 Межгосударственный стандарт. Степени защиты, обеспечиваемые оболочками (код IP). <2 ХАРАКТЕРИСТИКИ>
- 2.1 МИ 3286-2010 Рекомендация. Проверка защиты программного обеспечения и определение её уровня при испытаниях средств измерений в целях утверждения типа. <3 ОПИСАНИЕ И РАБОТА>
- 3.1 Правила технической эксплуатации электроустановок потребителей, утверждённые приказом Министерства энергетики РФ от 13.01.2003 №6. <4 МЕРЫ БЕЗОПАСНОСТИ>
- 3.2 ПОТ РМ-016-2001 РД 153-34.0-03.150-00 Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок, утверждённые постановлением Минтруда РФ от 05.01.2001 №3 (ред. от 20.02.2003). <4 МЕРЫ БЕЗОПАСНОСТИ>
- 4.1 Карта заказа. Преобразователи измерительные АДИ. <ВВЕДЕНИЕ>
- 5.1 ТРОН.407290.004 ПС Преобразователь измерительный АДИ. Паспорт. <3 ОПИ-САНИЕ И РАБОТА. 7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ. 8 УСТРАНЕНИЕ НЕИС-ПРАВНОСТЕЙ>
- 5.2 МП 2550-0145-2014 Преобразователи измерительные АДИ. Методика поверки. <7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ>
- 5.3 ТУ 4217-004-65987520-2014. Преобразователи измерительные АДИ. Технические условия. <1 НАЗНАЧЕНИЕ, ИСПОЛНЕНИЯ>
- 5.4 Акт рекламации. Преобразователи измерительные АДИ. <8 УСТРАНЕНИЕ НЕ-ИСПРАВНОСТЕЙ>

² Здесь и далее в угловых скобках <...> указаны разделы руководства, в которых дана ссылка на нормативный документ.

